Korean Journal of Veterinary Research 2010;50(1):37-42.
Evaluation of computed tomographic and radiographic myelography in normal miniature pigs
Mihyun Choi, Hyeyeon Lee, Mieun Kim, Junyoung Kim, Namsoon Lee, Jinhwa Chang, Joohyun Jung, Mincheol Choi
College of Veterinary Medicine, Seoul National University
Abstract
Evaluation of the myelography was studied in miniature pigs. Radiographs and computed tomographic (CT) images of the whole spine were obtained at clinically healthy twelve miniature pigs of 4 (8.7-10 kg) and 12 (26-31 kg) months. The assessments of the spinal cord were made in accordance with the Pavlov's method and compared area ratio [at spinal cord (SC), vertebral canal (VC) and vertebral body (VB)]. The Pavlov's ratio in the cervical spine was significant larger than that of thoracolumbar in radiographic myelography. On CT myelography, the area of the spinal cord had a significant difference between the cervical and thoracolumbar spine. Among the cervical spine, the ratios of spinal cord and vertebral body (SC : VB), vertebral canal and vertebral body (VC : VB) were minimum at the level of 4th cervical spine in both ages, while maximum at the level of 6th cervical spine in both months. In case of lumbar spine, the ratios of spinal cord and vertebral body (SC : VB) were the largest at the level of 4th lumbar spine in 4 months and at the level of 3rd lumbar spine in 12 months. In addition, the ratio of spinal cord and vertebral body (SC : VB) of the cervical spinal cord was significant lower at 4 months but the lumbar spinal cord showed lower pattern at 12 months old miniature pigs.
Key Words: computed tomography, miniature pigs, myelography, Pavlov's ratio, radiography


About
Policy
Browse articles
For contributors
Editorial Office
#401-1, 85 Bldg., College of Veterinary Medicine, Seoul National University
1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
Tel: +82-2-880-1229    Fax: +82-2-878-9762    E-mail: jvs@ksvs.or.kr                

Copyright © 2024 by The Korean Society of Veterinary Science.

Developed in M2PI

Close layer
prev next