Comparison of hemostatic efficacy and cytotoxicity of three ferric subsulfate- and chitosan-based styptics in different formulations using a rat tail bleeding model |
Jae-Young Byun1, Soojung Lee2, Jeong Ik Lee2, Hun-Young Yoon1 |
1Department of Veterinary Surgery, College of Veterinary Medicine, Konkuk University 2Regeniks Co., Ltd. |
|
Abstract |
This study was conducted to compare the hemostatic efficacy of three ferric subsulfate- and chitosan-based styptics as a powder and a gel containing ferric subsulfate and chitosan (FSC-PO and FSC-G, respectively) and a soaked pad containing ferric subsulfate and lidocaine (FSL-SP) using a rat tail bleeding model. The cytotoxicity of the styptics against L-929 mouse fibroblasts was also evaluated using a cell counting kit-8 assay. Four groups of 10 rats each were assigned to the three different styptics and a non-treated control groups. Rat tail tips were transected, after which styptics were applied with pressure. The wounds were observed for hemostasis for 3 min, then irrigated with saline to check for recurrent hemorrhage. L-929 mouse fibroblasts were exposed to extracts of the styptics (100 mg/mL) and their dilutions (1:10, 1:100, and 1:1,000). FSC-PO and FSC-G more effectively controlled initial hemorrhage than FSL-SP (p = 0.033). Additionally, FSC-PO and FSC-G more effectively maintained hemostasis than the control group (p = 0.02 and p < 0.01, respectively). However, all styptics showed enhanced cytotoxicity against L-929 cells in a dose-dependent manner. Therefore, although FSC-PO and FSC-G would be recommended to control hemorrhage, the benefits of styptics must be balanced against the clinical significance of their cytotoxicity. |
Key Words:
chitosan, ferric subsulfate solution, hemostasis, hemostatics, immunologic cytotoxicity |
|