1. Crane RA, Scott TB. Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J Hazard Mater. 2012;211-212:112-125.
2. Bai W, Zhang CC, Jiang WJ, Zhang ZY, Zhao YL. Progress in studies on environmental behaviors and toxicological effects of nanomaterials. Asian J Ecotoxicol. 2009;4:174-182.
3. Korbekandi H, Iravani S. Chapter 1. Silver Nanoparticles. In: Hashim AA, ed. The Delivery of Nanoparticles. IntechOpen, 2012.
5. Yang Z, Guo Z, Qiu C, Li Y, Feng X, Liu Y, Zhang Y, Pang P, Wang P, Zhou Q, Han L, Dai W. Preliminary analysis showed country-specific gut resistome based on 1,267 feces samples. Gene. 2016;581:178-182.
6. El Sabry MI, McMillin KW, Sabliov CM. Nanotechnology considerations for poultry and livestock production systems: a review. Ann Anim Sci. 2018;18:319-334.
7. Hartemann P, Hoet P, Proykova A, Fernandes T, Baun A, De Jong W, Filser J, Hensten A, Kneuer C, Maillard JY, Norppa H, Scheringer M, Wijnhoven S. Nanosilver: safety, health and environmental effects and role in antimicrobial resistance. Mater Today. 2015;18:122-123.
9. Al-Zahrani HA, El-Waseif AA, El-Ghwas DE. Biosynthesis and evaluation of TiO2 and ZnO nanoparticles from in vitro stimulation of Lactobacillus johnsonii. J Innov Pharm Biol Sci. 2018;5:16-20.
10. Blake DP, Tomley FM. Securing poultry production from the ever-present Eimeria challenge. Trends Parasitol. 2014;30:12-19.
13. Hausermann W. Poultry coccidiosis. Novartis animal health. Proc Nat Act Sci. 1999;92:7550-7554.
15. Jorgensen WK, Stewart NP, Jeston PJ, Molloy JB, Blight GW, Dalgliesh RJ. Isolation and pathogenicity of Australian strains of Eimeria praecox and Eimeria mitis. Aust Vet J. 2008;75:592-595.
16. AL-Attar MA. Factors affecting the pathogenesis of E. necatrix infections in chicken [PhD dissertation]. Guelph, ON: University of Guelph; 1981.
17. Hamidinejat H, Shapouri MS, Mayahi M, Borujeni MP. Characterization of Eimeria species in commercial broilers by PCR based on ITS1 regions of rDNA. Iran J Parasitol. 2010;5:48-54.
18. Kidd M, Ferket P, Qureshi M. Zinc metabolism with special reference to its role in immunity. Worlds Poult Sci J. 1996;52:309-324.
19. Ahmadi F, Ebrahimnezhad Y, Maheri Sis N, Ghalehkandi JG. The effects of zinc oxide nanoparticles on performance, digestive organs and serum lipid concentrations in broiler chickens during starter period. 2013;3:23-29.
20. Prasad AS, Bao B, Beck FW, Sarkar FH. Zinc enhances the expression of interleukin-2 and interleukin-2 receptors in HUT-78 cells by way of NF-kappaB activation. J Lab Clin Med. 2002;140:272-289.
23. Wang H, Zhang J, Yu H. Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: comparison with selenomethionine in mice. Free Radic Biol Med. 2007;42:1524-1533.
24. Al-Gawad AA, Mahdy OA, El-Massry AA, Al-Aziz MSA. Studies on coccidia of Egyptian balady breed chickens. Life Sci J. 2012;9:568-576.
26. Iacob OC, Duma V. Clinical, paraclinical and morphopathological aspects in cecal eimeriosis of broilers. Revista Scientia Parasitologica. 2009;10:43-50.
29. Mohd Yusof H, Mohamad R, Zaidan UH, Abdul Rahman NA. Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: a review. J Anim Sci Biotechnol. 2019;10:57.
30. Abd El Megid AD, Khaled M, Emam MA, Adel A. Biochemical role of zinc oxide and propolis nanoparticles in protection rabbits against coccidiosis. Benha Vet Med J. 2018;34:314-328.
32. Bafundo KW, Baker DH, Fitzgerald PR. The iron-zinc interrelationship in the chick as influenced by Eimeria acervulina infection. J Nutr. 1984;114:1306-1312.